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Shape from specularities: computation and

psychophysics
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Cambridge, MA 02159, U.S.A.

SUMMARY

Images of artificial and natural scenes typically contain many ‘specularities’ generated by mirror-like
reflection from glossy surfaces. Until fairly recently computational models of visual processes have tended
to regard specularities as obscuring underlying scene structure. Mathematical modelling shows that, on
the contrary, they are rich in local geometric information. Recent psychophysical findings support the
notion that the brain can apply that information. Our results concern the inference of 3D structure from
2D shaded images of glossy surfaces. Stereoscopically viewed highlights or ‘specularities’ are found to

serve as cues for 3D local surface-geometry.

1. INTRODUCTION

The idea that human vision exploits physical con-
straints is, of course, not new. It has been argued
vigorously by Marr (1982) and is exemplified by
surface continuity and epipolar constraints in theories
of stereo vision (Julesz 1971; Marr & Poggio 1979;
Mayhew & Frisby 1981). Continuity constraints also
underlie certain theories of motion perception (Biilthoff
et al. 1989; Hildreth 1984; Yuille & Grzywacz 1988)
which have survived some psychophysical testing. In
the stereoscopic analysis of specularities also it seems
that the visual system may exploit, at least partially,
some physical constraints. In that case the constraints
are expressed in terms of the differential geometry of a
surface patch and its interaction with incident light.
Earlier sections of this paper deal, in some detail,
with the physical constraints on specular reflection.
Later sections describe psychophysical experiments
designed to test some of the predictions of the theory.
Although the experiments are stereoscopic the theory is
developed in terms of visual motion. It is an extension
of the theory of Koenderink & van Doorn (1980),
which described qualitative changes in the pattern of
specularities on a surface under viewer motion.
Principally they found that, as the viewer moves,
specularities are created and annihilated, in pairs, on
(or, in fact, near) parabolic lines. Whilst it is very
robust, such a theory is of limited use for short-range
motion or stereopsis. Long-range motion of the viewer
is necessary before it is at all likely that the creation or
annihilation of specularities will be witnessed. How-
ever, robust effects also occur between creation and
annihilation. The direction and magnitude of the
image motion of the specularity are cues for surface
geometry. Specular motion is theoretically at its most

t Current address: Department of Cognitive and Linguistic
Sciences, Brown University, Box 1978, Providence RI 02912.
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robust for convexity—concavity in reversible figures.
The measured motion is always relative, relative, that
is, to the motion of a nearby surface point. It is
therefore parallax rather than raw image motion that
serves as the geometric cue. This reinforces what
appears to be a general principle, already shown in the
cases of egomotion recovery (Longuet-Higgins &
Prazdny 1980) and recovery of surface curvature from
apparent contours (Blake & Cipolla, 1990) : parallax is
a robust cue.

The specular motion model maps naturally to a
stereoscopic model via substitution of stereoscopic
baseline for viewer motion and of stereoscopic disparity
for image motion. It is mathematically convenient to
model imaging as a projection onto a sphere, through
its centre (Maybank 1985). In that case image motion
at a point on the sphere is represented by a vector in
the tangent plane. Stereoscopic disparity is therefore a
vector difference of positions on the left and right
image spheres. The stereoscopic baseline generates a
natural coordinate system on the spheres: the epipolar
lines form lines of ‘longitude’. Each disparity vector
then has an ‘epipolar’ and a ‘ circumpolar’ component.
These correspond approximately to the conventional
horizontal and vertical components under planar
projection, if the eyes are verged on a distant point.
Both components are, theoretically, linked to surface
shape. We will show that these links are found
experimentally too.

It could be argued that specularity is a marginal
visual phenomenon since specularities are relatively
sparse in images compared with texture edges and
other features. Moreover it is associated more with
artefacts, relatively recent on an evolutionary time-
scale, than with ‘natural’ objects. Is it really likely, as
we claim, that we have developed mechanisms to
analyse specularities? In reply, it is worth noting firstly
that specularities do commonly occur on (hairless)
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faces and that facial recognition is, presumably,
important for survival. Wet surfaces, commonly found
in nature, are also specular. More significant though, it
is not necessary to claim that the ability to deal with
specular motion and stereo developed via evolution.
The processing of specularities could simply be an
extended usage of the parallax mechanism, learnt in a
modern environment filled with specular artefacts.

2. THE OPTICAL PRINCIPLE

The basic principle of the ‘specular stereo’ model
derives from familiar concepts of ray-optics (figure 1).
The image of a light source, a specularity, appears
behind a glossy, convex surface and in front of a
concave one, provided both viewer and source are
sufficiently distant from the surface. Before we can test
its predictive power for human visual phenomena, this
principle must be extended in several ways.

(i) It must deal with hyperbolic (saddle) surfaces
that are convex in some planes and concave in others.

(ii) The cases of small source and viewer distances
must be covered. For example, as the viewer crosses a
‘caustic’ (Bruce & Giblin 1984) of a concave surface
the image of the source vanishes (figure 2). Stereoscopic
disparity of the specularity becomes very large as the
viewer approaches the caustic and may then change
sign as the caustic is crossed.

(iii) the theory must include reflecting surfaces that
would make poor optical elements because they are
severely astigmatic. In that case the ‘depth’ of a
specularity is not well defined (Koenderink 1976;
Longuet-Higgins 1982) because, in general, two rays
reflected from a point source off such a surface will be
skew. They have no intersection and hence form no
virtual image. Rather than depth, ‘relative stereo-

Ny
N

virtual image convex surface light source

real image

/
AN

concave surface

light source

Figure 1. Specular stereo, the basic principle: specularities
appear behind a convex mirror but in front of a concave one.
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Figure 2. The caustic of a simple cylindrical parabolic
mirror. The caustic is the envelope of rays from the point
source reflected by the surface. As the viewer crosses the
caustic the real image of the source vanishes.

scopic disparity’, a vector quantity, is used to
characterize the stereoscopic appearance of a specular
reflection.

(iv) To make precise predictions, a quantitative
model of these phenomena will be needed. First a
model is presented that relates the motion of a
monocular observer to motion of the specularity and
the position, orientation and curvature of the surface.
Motion parallax causes the observer to see the
specularity in depth, behind or in front of the surface.
For example, if the specularity appears behind the
surface its image motion will lag behind that of a fixed
surface feature. Image motion in the monocular model
can then be used to derive a first-order, approximate
model for stereoscopic observation of specularities.
This is done by regarding stereoscopic disparity as
image-motion and stereoscopic baseline as viewer-
motion, over some short time 4¢. Later in the paper,
experimental work on stereoscopic specular pheno-
mena is described. Work on specular motion is in
progress.

3. SPECULARITIES AND THE MOVING
OBSERVER

Before discussing the full models for specular motion
and stereo, in the two succeeding chapters, two simple
examples will be given. A monocular observer, moving
relative to a glossy surface illuminated by a point
source, sees the images of specularities in motion
relative to the images of fixed surface points. In the
cases of spheres and cylinders, under symmetrical
viewing conditions, we can write down simple linear
expressions relating the motion parallax of a
specularity to the motion of the viewer. The coefficient
of the linear relationship depends on distance from the
viewer to the object and on surface curvature.

Images will be considered to be formed by projection
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onto a unit image-sphere, through a pinhole at its
centre. This is done not so much because the retina is
roughly spherical but for mathematical simplicity
(Maybank, 1985). The parallax 4, of a specularity is its
velocity, on the image sphere, relative to some fixed
surface feature or marking.

Now consider the case of a glossy sphere of radius a,
viewed along a ray passing through the centre of the
sphere. Suppose also that the viewer’s velocity v, is
orthogonal to the line of sight. Provided that the viewer
is not too close to the surface of the sphere, parallax
and viewer velocity are related approximately in the
following simple way:

/\2

a

2—4,=—v, (1)
where A is the distance from the viewer to the spherical
surface, along the line of sight. Several characteristic
properties of the behaviour of moving specularities can
be observed in this relation.

(i) the magnitude of the parallax diminishes ac-
cording to an inverse square law, as the object distance
A increases.

(ii) The magnitude of the parallax increases with
the radius of the sphere. In the limit of small radius, the
sphere can be regarded as a fixed speck, so clearly
parallax should become very small. For larger radius,
the specularity, appearing to travel around the sphere,
covers larger distances and hence generates larger
parallax for a given viewer velocity.

(iii) Note that the approximation breaks down for
the limit of large radius a. The formula above suggests
that parallax should continue to increase as a gets
larger and the surface is locally closer and closer to
planarity. In fact this does not happen. For approxi-
mately planar surfaces the specularity moves ‘with’ the
viewer, rather like the reflection of the moon in a lake,
seen from a moving vehicle. This behaviour is correctly
predicted by the full model, described later.

(iv) The magnitude of parallax is proportional to
the magnitude of viewer velocity.

(v) The parallax vector is parallel to the viewer’s
velocity only in the special case of the sphere, but not
in general.

Now consider a cylinder of radius ¢ with its axis
running in a direction w that is orthogonal to the line of
sight. Now the relation of parallax to viewer motion is

2—m, 4, =—v, (2)
a

where 7, 4, is the component of the parallax vector 4,
that is orthogonal to the cylinder axis. Most of the
properties that held for the sphere are seen here except
that, as in the general case, the parallax vector is no
longer necessarily parallel to the motion vector.

4. THE SPECULAR MOTION MODEL

The computational model for specular motion is
based on ray-optics and differential geometry. Motion
of the viewer generates, via a linear system, apparent
motion of specularities. It is clear that the system must
be linear: if the velocity of the viewer doubles then all
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image velocities are also doubled. The coefficients of
the linear system depend on viewing and illumination
geometry, surface depth and orientation, and surface
curvature. These coefficients vary with time as the
specularity travels over the surface. Thus an observed
apparent motion of a specularity serves as a cue for
surface curvature by constraining the coeflicients of the
linear system. The examples of specular motion from
the previous section involved spheres and cylinders
viewed along the surface normal. A general model will
now be developed which allows for arbitrary local
surface shape, and arbitrary positioning of light-source
and viewer relative to the surface.

(a) Surface curvature

Surface curvature can be represented via funda-
mental forms (matrices of lst and 2nd derivatives),
principal curvatures and directions (do Carmo 1976),
or the ‘Weingarten map’ (Thorpe 1979). The first two
representations are tied to a coordinate frame or a
particular parameterization of the surface. A par-
ticularly convenient coordinate frame (Blake 1985) is
one whose axes include the surface normal and the
vector orthogonal to both incident and reflected light-
rays. However, since we will be using spherical
projection, it should be possible to construct purely
vector arguments, not tied to any coordinate frame. In
that case local surface curvature is concisely repre-
sented by means of the Weingarten map W. Consider
a moving point 7(¢) on a surface. The normal vector
n(t) to the surface at »(¢) changes direction gradually
as the point moves. The more highly curved the
surface, the greater is the rate of change of direction of
n(t). This rate is not merely a scalar but a linear,
vector-valued function W of the surface-point motion
r,:

n, = W(r,). (3)

The mapping W is considered to be restricted to the
tangent plane at » since n, and », must both lie in the
tangent plane:

nn=0, r,n=0.

For the two examples mentioned above, the sphere
and the cylinder, the Weingarten map is shown in
figure 3. For a sphere of radius a the rate of change n,
in n, given by the Weingarten map W, is always
parallel to the point motion #,:

1
n =7,
The magnitude of the rate of change n, is in inverse
proportion with the radius of the sphere. However, for
a cylinder of radius a and with its axis in the direction
u, n is always orthogonal to the u,

1

n, = ;ﬂu<rt)
where
(%) = ux (xxXu)

t The derivative of » with respect to time is denoted 7,.
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Figure 3. The local curvature at a point » on a surface is concisely represented by the Weingarten map W which
specifies the motion n, of the normal in terms of the motion #, on the surface. This is illustrated for a sphere (a) and
a cylinder (b).

convex surface

/

atr(t)

surface
feature

virtual image of light
source lying behind
surface

light ray reflected

source at S

viewer velocity V
center of

projection
at V(t)

image sphere

Figure 4. Viewer in motion is at position ©(¢) at time ¢ and sees a ray from the light source at § reflected from the
curved surface at 7(¢). The reflected ray is in the direction T'(f).

denotes the component of a vector x that is orthogonal
to u. For the cylinder, as for the spherical case, the rate
at which the normal n turns is inversely proportional to
radius a.

(b) Moving monocular observer

The geometrical configuration for the specular
motion problem is shown in figure 4. At time ¢, the
observer’s centre of projection is at position v(f) (refer
to figure 4) and the specularity is generated by a ray

Phil. Trans. R. Soc. Lond. B (1991)

from the light source at § incident, from direction L(f),
at position 7(t) on the surface. The reflected ray lies in
the direction T'(¢) and strikes the unit image sphere.
The image of the specularity on the unit image-
sphere, allowing for the rotation R(f) of the image-
sphere relative to the world frame, is at R(f), T(¢)
where the rotation operator R(¢) represents the attitude
of the world-frame relative to the observer’s frame at
time ¢. The ray from the surface feature to the centre of
projection ©(¢) is in the direction T*(¢). Again, the
corresponding image point, related to the ray direction
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by a rotation R(t), is at R(¢) T*(¢). It serves as a surface
reference point for the motion of the specularity. The
viewer observes the parallax of the specularity relative
to the reference point. Without loss of generality we set
R(0) = I, the identity transformation, so that the
world-frame and the observer’s frame are initially
aligned. Furthermore it is assumed that the specularity
and the reference point initially coincide, so that

T(0) = T*(0). (4)

(¢) Specular motion constrains surface curvature

The model consists of the specular motion equation
relating the relative motion 4, of the specularity to the
viewer motion v,. The model equation is derived in
Appendix A., from equations for ray-optics and for
differential geometry. The model equation, consisting
of coefficients which depend on depth A and on surface
curvature, expressed by the Weingarten map W, is as
follows:

X(QW—kIT) P4, = — ITv,, (5)

where the operator II is defined in terms of operators
my, 7, for projection orthogonal to T and n re-
spectively:

_ ﬂnﬂT
T Ton’ (6)

(Projection operators of the form =, were defined
earlier. Note that they do not commute: 7, m, # m,7,.)
The operator £ is simply a mapping from the tangent
plane of the image-sphere to the surface tangent plane,
defined by its projection/scaling action on a general
vector x:

_nx(xxT)

P(x) = T (7)

r(t+at)

r (t)

convex surface

T(t + at)

surface
feature
T(t)

*
virtual image of light T

source lying behind
surface

T:(t+At)
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The constant £ is an ‘effective curvature’, the sum of
curvatures induced by the finite distances to viewer (A)’
and source (u):
1 1

k= PSS 8)

The form of the general model (5) is similar to the
relationship (1) that was stated earlier for the sphere
under symmetrical viewing geometry, but generalized
in several ways. In place of the spherical curvature 1/a
we now have local surface curvature expressed gen-
erally in terms of the Weingarten map W. Projection
operators # and IT take care of general viewing
geometry, that is, arbitrary positioning of the source
and viewer relative to the surface tangent plane. The
additional £ term in (5) is dominant for surfaces that
are almost planar, so that W is negligible. The inclusion
of the £ term leads to the correct prediction of motion
‘with the viewer’ for planar surfaces (the reflection of
the moon moving over the lake).

5. THE SPECULAR STEREO MODEL

Stereoscopic disparity is a vector quantity, con-
ventionally taken (Mayhew & Longuet-Higgins 1982)
to have a horizontal and a vertical component equal to
the differences in x,y coordinates of corresponding
image points in left and right planar projections. Since
we are using spherical projection a modified definition
is required, as the difference of two vectors on the
image-sphere. Left and right stereoscopic views will be
considered as successive views of the monocular
observer at times ¢t = 0 and ¢ = A¢ respectively, as in
figure 5. Then the disparity of the specularity is

4 = R(At) T(4t)—T(0), 9)

and similarly the disparity of the reference feature is

A* = R(4¢t) T*(4t)—T*(0). (10)
N

RIGHT EYE
d=vat

)

LEFT EYE

Figure 5. Geometry for specular reflection in stereoscopic views. The right eye is considered as a copy of the left eye
after motion over a time interval 4¢.

Phil. Trans. R. Soc. Lond. B (1991)
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Figure 6. The displacement of the specularity in the right
(versus left) image is oblique, whereas that of any necarby
surface feature is horizontal. The surface feature is con-
strained by epipolar geometry but the specularity is not.

The reference feature, being fixed in space, generates a
disparity vector 4* that must lie in an ‘epipolar plane’
(Mayhew & Frisby 1981), the plane containing the
baseline vector (figure 5)

d = v(41) —v(0),

and the image ray T*(0). Provided the baseline d is
known, the magnitude of the disparity 4* can be used
to compute, by triangulation, the distance of the
reference feature from the centre of projection. How-
ever, the disparity 4 of the specularity need not lie in
the epipolar plane (figure 6) when, as in general, the
surface acts as an astigmatic mirror. Its disparity has
both an ‘epipolar’ component and a ‘circumpolar’
component. We refer to ‘epipolar’ and ‘circumpolar’
components of disparity rather than horizontal and
vertical ones. These alternative decompositions of the
disparity vector are identical only in the special case
that optic axes of the two eyes are parallel and
perpendicular to the baseline d. For typical stereo-
scopic viewing conditions (modest angle of vergence),
however, the two decompositions are approximately
the same.

When the baseline is not too large the stereoscopic
model can be approximated by using temporal
derivatives of quantities from the monocular motion
model. The approximations for stereoscopic baseline
and disparities, valid to first order when the time
interval A¢ is short, are:

d=uv,1 (1)
A= (T,+R,T) At (12)
A% = (T*+R, T*) At. (13)

(a) Relative disparity of specularities

Surface curvature will be shown, both in theory and
later experimentally, to be directly related to the
relative disparity of specularities. The relative disparity
A’ of the specularity is the vector difference between its
disparity and that of the reference point:

A = A— A%, (14)

It has both epipolar and circumpolar components each
of which turns out to be an important constraint on
local surface curvature. The relative disparity of the
specularity can be approximated to first order in 4,, via

Phil. Trans. R. Soc. Lond. B (1991)

equations (12) and (13), in terms of the image velocity
of the specularity relative to the reference feature. Thus

A" = A, At (15)
where
4, = (T,-T7). (16)

Fortuitously, the relative image velocity 4, and hence
the relative disparity 4" of the specularity are in-
dependent (to first order in A¢) of the relative rotation
between the left and right image spheres. Relative
disparity is therefore (approximately) invariant to
rotational error in stereoscopic calibration, for
example, errors in estimation of vergence. This proves
to be part of the reason for the robustness of relative
disparity of specularities (see the following section) as a
cue for surface curvature.

(b) The computational model

In the previous section, the computational model for
specular motion was described. From that the specular
stereo model can be derived by taking a constant
motion v, over some short time A¢ and sweeping out a
baseline d = v, 4t. It is expressed as a relationship
between surface curvature and stereoscopic relative
disparity.

(¢) The specular stereo model

The specular stereo model is obtained from the
monocular motion model, running over a time-interval
At. Multiplying (5) by 4t and substituting the baseline
d = v, 4t and relative disparity 4" = 4, 4¢ yields the
specular stereo equation:

QW —kIT) PA = —ITd. (17)

Note that the usual inverse-square scaling of disparity
with distance appears in the model as the A* term in
(17). As expected, the magnitude of relative disparity
A’ is proportional to the magnitude of the baseline d.

The linear operator (2W—kIT) in the model has
maximum rank 2 because it approximates the mapping
between two-dimensional spaces, namely the object
surface and the image sphere?t. In general the operator
has full rank but in special cases, when its rank falls
below 2, it is degenerate. The geometrical interpret-
ation of this degeneracy is that the viewer’s position v
has coincided with a ‘caustic’ of the surface patch (A.
Zisserman, Personal Communication). Now a caustic
(Bruce & Giblin 1984) is a surface over which reflected
light is concentrated. (It is well known that the inner
cylindrical surface of a teacup, for example, con-
centrates light over a caustic surface which is seen on
the bottom of the cup forming two arcs joined by a
cusp.) As a monocular viewer crosses a caustic, the
apparent image-motion of the specularity approaches
infinity and the specularity suddenly disappears al-
together. A stereoscopic viewer, close to a caustic, may
therefore see a specularity in one way but not in the
other.

1 In fact the linear operator is the differential of the mapping from
the surface patch to the image-sphere.
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(d) Approximate model

Provided the point of reflection »(¢) does not lie at a
parabolic point of the surface (the Weingarten map is
of full rank) and the viewer and source are not too close
to the surface the £ term is negligible, giving the
simplified relationship

INWPA = —ITd. (18)

It can clearly be seen that the relative disparity A4’
varies in inverse proportion to the magnitude of
curvature (). As an example, consider again the
simple case of a spherical surface patch of radius q,
viewed along a surface normal, with baseline d
perpendicular to the line of sight. In this case the
geometric operators I1,% are just identities, the
Weingarten map W = 1/a. Then the approximate
model (18) gives the relative disparity as

, a

inversely proportional to the curvature 1/a. This is
very similar to the example of specular motion for a
sphere, that was given in section 3. The associated
relative depth D (apparent depth of the specularity
below the surface) can be shown by straightforward
trigonometry to be

D =—X4')/|d|. (20)

Substituting (19) into (20) we find that D = a/2, half
the radius of the sphere. If the spherical surface patch
is concave, so that W = —1/a, then the apparent depth
is D = —a/2 and the specularity appears to be above
the surface.

Degeneracy in the approximate model (18) occurs
when the Weingarten map W has less than full rank.
That occurs precisely when one of the principal
curvatures of the surface is zero, that is on parabolic
lines. This prediction, valid for the approximate model,
that specularities are annihilated and created on
parabolic lines has been noted by Koenderink and van
Doorn (1976). We have seen however, that the general
result is more complicated. Annihilation and creation
actually occur as the viewer crosses the caustic (A.
Zisserman, personal communication) and the corre-
sponding surface location of the specularity, at the
instant of disappearance, is close to but not generally
on a parabolic line, becoming close to the parabolic
line if the viewer and source are further away from the
surface.

(e) Robustness of the specular stereo cue

Reinforcing the experimental evidence reported
below that specularities are significant shape cues,
there is a compelling theoretical argument. Specular
image motion is robust to uncertainties in viewer
motion, and the same is true of specular relative
disparities. There are several quite independent senses
in which this is true.

(i) Uncertainty in rotational viewer-motion
First curvature measurements based on the model

Phil. Trans. R. Soc. Lond. B (1991)

(17) are relatively insensitive to motion uncertainty
because the relative disparity vector 4’ is a difference
of disparities and was shown, unlike absolute dis-
parities, to be independent of errors in angular velocity
of the viewer relative to the surface. This result relies on
the assumption that the images T and T* of specularity
and surface reference point respectively are instan-
taneously coincident. In practice (see, for example,
figure 104) the centre of a specularity may not coincide
precisely with any surface marking. This small error
will give rise to some residual sensitivity to viewer
rotation.

(i1) Robustness to noise from spatial differentiation

Given the robustness to error in viewer rotation, the
remaining motion uncertainty of curvature measure-
ments is no worse than the sensitivity for measurement
of the depth A which appears in the model (17).
Curvature measurements from non-specular texture
features require the computation of a second spatial
derivative A , of depth along a contour so that although
sensitivity to motion uncertainty is comparable with
the specular case, one should expect greatly increased
sensitivity to image measurement uncertainty via the
second spatial derivative. In the specular case, how-
ever, no spatial derivatives need to be computed
because differentiation is performed, effectively, by the
physical system itself. Ray optics on a curved surface
behaves like a differentiation machine.

(iii) Sensitivity to magnitude of translational motion

When viewer and source are sufficiently far from the
surface the approximate model (18) applies. Within a
small surface patch, furthermore, depth A can be
considered to be roughly constant. Under those two
assumptions the effect of uncertainty in the magnitude
of the viewer motion v, is confined to a global rescaling
of curvatures via the A* (depth-squared) term in the
approximate model (18). Thus any ratio of a pair of
curvature measurements from the specular stereo
model, for adjacent points, is independent of the
magnitude of viewer motion, within the limits of our
approximations. There is still, of course, a dependence
on the direction of the viewer’s translational motion v,
via the ‘input’ to the linear system on the right-hand
side of (18). This dependence is well-conditioned
however. For example, considering the earlier case of a
spherical patch viewed along its surface normal, an
error of 5 degrees in the direction of motion would
result in errors in curvature terms of less than 109%,.

(iv) Invariance to source position

No matter how gross the error in the depth A may
be, it remains positive so that motion errors cannot
cause a change in the sign of measured curvatures. This
leads to the following rule for discrimination of
convexity—concavity (Zisserman et al. 1989) for which
a detailed argument is given in the appendix:

If the epipolar component 4,-(m,v,) of relative specular
image motion 4, is positive then the underlying surface is
either convex or hyperbolic. Otherwise, when the epipolar
component of 4, is negative, the surface is either concave or

hyperbolic.
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This rule is independent of all viewer and illumination
geometry except that it still requires that the direction
of the motion be known. It is derived from the
approximate model and hence must be modified for
the full model. In that case the epipolar component of
4, is always positive for convex surfaces. For concave
surfaces it is usually negative. It may however be
positive if the viewer is close enough to the surface. This
can happen when the viewer’s position v lies between
the surface and one of its caustics. However, if viewer
and source are far from the surface the approximate
model holds, and the convex—concave discrimination
rule above holds good.

(v) Robustness of specular stereo
The insensitivity results above are presented for the
motion case, but apply equally well to stereoscopic
viewing. The stereoscopic equivalent of rotational
viewer motion is rotation of one eye relative to the
other. The equivalent of translational motion is the
' stereoscopic baseline and the counterpart of image
motion is stereoscopic disparity. Thus the rule for
convex—concave discrimination in the stereoscopic
case depends on the sign of the epipolar component
A’ (myv,) of the relative disparity 4 of the specularity.
This requires only that the direction of the stereoscopic
baseline is known, which is a plausible assumption.

6. EXPERIMENTAL PREDICTIONS
OF THE MODEL

The specular stereo model can be seen in one of two
ways. For given surface and viewing geometry, it
predicts the linear dependence of the relative motion of
the specularity on viewer motion. The relative motion
can be computed by inverting the linear operator
(2W—kII) in (18), restricted to the surface tangent
plane. Alternatively, when relative motion 4, is
regarded as a curvature cue, the model represents two
constraints on the Weingarten map W, given viewing
geometry, depth, source position observer motion.
These two ways of viewing the model correspond to
two kinds of experiments (Blake & Biilthoff 1990). In
the first, independent surface curvature cues are visible
and the subject is free to adjust the relative disparity
(4") of the specularity. The model makes a prediction of
the adjusted disparity. In the second experiment, the
stimulus contains an ambiguous surface, relative
disparity of the specularity is fixed at one of two values
and the subject makes a forced choice between
ambiguous interpretations. The model predicts the
influence of relative disparity on perceived curvature.

If we assume that the specular stereo model, which
describes the physical interaction of light-rays with
curved surfaces, also accounts, at least partially, for
human perception of glossy, curved surfaces then the
following predictions can be made.

(i) In the adjustment mode (1) dense surface texture
is available, serving as a strong cue for curvature even
in the absence of a specularity. In that case light source
direction can be inferred. If the viewer is far from the
surface then, unless the light source is itself visible, it is
excluded from the cone of view. It must also, therefore,

Phil. Trans. R. Soc. Lond. B (1991)

be far from any surface patch that is seen near the
centre of the field of view. In that case the approximate
specular stereo model is valid so that specular relative
disparities are approximately independent of the
(unknown) source distance. It is therefore possible that
the visual system might be capable of detecting, with
some precision, quantitative discrepancies in relative
disparity, both epipolar and circumpolar components.

(i) The model predicts non-zero relative epipolar
disparity for specularities on a general curved surface.
This means that specularity does not, according to ray-
optics, lie on the surface, rather in front or behind.
Subjects should therefore perceive a specularity as
more realistic if it does not coincide, in depth, with the
surface.

(ii) The circumpolar (vertical) component of
specular relative disparity is also determined by the
model and unlike the circumpolar relative disparity of
surface features, is generally non-zero. The model
predicts therefore that non-zero circumpolar relative
disparity should be a cue to specularity.

(iv) Specular relative disparity is a direct curvature
cue whereas disparities of non-specular features serve
as curvature cues only after noise-sensitive computation
of second derivatives (Rogers & Cagnello 1989). The
specular cue should therefore be more robust unless
surface texture cues are sufficiently dense to com-
pensate for the ill-conditioning of spatial differen-
tiation.t When both specular and non-specular stereo-
scopic cues are present, and are mutually inconsistent,
it would therefore be expected that the specular
curvature cue should dominate. In particular, that
dominance should increase as the non-specular texture
becomes sparser.

(v) The sign of epipolar relative disparity should be
a particularly robust cue, capable of convex—concave
disambiguation, regardless of whether information
about light-source position is available (experiment 2).

(vi) If the approximate model applies to the
stereoscopic analysis of specularities, that is human
vision embodies no compensation for finite source and
viewer distances, then convex—concave disambiguation
may occasionally fail. When the viewer (or source) is
close to a concave surface the sign of epipolar relative
disparity of the specularity may none the less be
positive, and thus act as a cue for convexity. This
occurs only on sufficiently shallow, concave surfaces
and is therefore probably rather uncommon.

(vil) The monocular shape of the specularity may
act as a cue to shape. The reflection of a spherical
source, for example, in a curved surface, is approxi-
mately an ellipse whose dimensions and orientation
depend on surface curvature. Theory predicts (Blake &
Brelstaff 1988) that the monocular cue must be subject
to (at least) a fourfould ambiguity. The four interpret-
ations include one convex, one concave and two
hyperbolic (figure 7).

(viii) It has been shown (Blake & Brelstaff 1988)
that this monocular information is complementary to
that available from specular stereo. Specular stereo,
involving the two components of relative disparity of a

t This explains why, for example, the slightest dent in a polished car
door becomes plainly visible when it catches a highlight.
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Figure 7. Observation of a specularity, generated by a spherical source of known size, determines local surface
curvature up to a four-fold ambiguity. The possible surface interpretations of a particular specularity are shown, one

convex, one concave and two hyperbolic.

specularity, only partially constrains the three para-
meters of surface curvature at a point, leaving one
degree of freedom. If the visual system were also using
monocular cues they could, in principle, be combined
with specular stereo cues to determine surface cur-
vature fully at any surface point, even on an
unsymmetrical surface.

(ix) The results described above for specular stereo
also have counterparts for specular motion. Thus
moving specularities might be expected similarly to act
as curvature cues.

(x) Under extended motion of the viewer it is
possible, in principle, to compute the position of a light
source from the image path of a specular reflection
(Zisserman et al. 1989). For extended motions (of the
right kind) it is therefore predicted that specular
motion should serve as a quantitative curvature cue.

7. PSYCHOPHYSICAL EXPERIMENTS

This section describes two experiments aimed to test

Phil. Trans. R. Soc. Lond. B (1991)

whether the human visual system exploits constraints
introduced in the previous sections. For the first
experiment an adjustment task was devised in which
the subject interactively changed both epipolar and
circumpolar disparities of a specularity, while keeping
the disparity of the underlying surface constant. For
the second experiment an ambiguous non-disparate
image of surface was used in which the relative
disparity of a specularity was fixed at one of two values
corresponding to a convex or concave surface. The
model predicts the influence of relative disparity on
perceived curvature by the following constraint:

No convex surface can generate a convergent (—) relative
epipolar disparity; a concave surface does not generate a
divergent (+) one, except under the conditions mentioned
above which are unusual in practice.

(a) Stimulus generation

Images of glossy, textured, curved surfaces are
generated with a solid modelling software package
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(S-Geometry, Symbolics Inc.) and displayed on a high-
resolution colour monitor (Mitsubishi UC-6912, short
persistence phosphor). To view these surfaces in 3D,
stereoscopically disparate images were interlaced (even
lines for the left-hand image and odd-lines for the
right-hand image) with a frame-rate of 30 Hz. These
images were viewed through shutter glasses (Stereo-
Optic Systems, Inc.), which were triggered by the
interlace signal to present only the appropriate images
to the left and right eyes. The images were shown with
a true resolution of 254 grey levels by using a 10-bit
digital-to-analog converter. To get a sufficient ref-
erence for the relative disparity of a specularity a
textured surface was used instead of a homogeneous
surface. Note that Biilthoff & Mallot (1988) showed
that an edge-token on a shaded surface can have a
pulling effect reducing the depth between token and
surface. This is not the case if the surface has enough
features, in other words is textured. A bi-level texture
of sufficient density and contrast (909%,) to furnish
strong cues for curvature from edge-based stereo was
generated as a level-crossing of a Brownian fractal
noise function (1/fspatial frequency spectrum, Ist and
2nd harmonic removed) using the Symbolics Fractal
Software. The texture (256 x 256 pixels) was smoothly
mapped onto the curved surface patches using (uUv-
spherical MIP mapping (Williams 1983). Gloss was
simulated with the Phong (1975) shading model by
using the following equation:

I=0.15+0.45(0.5 cos B+ 1.5(cos $)**),

CRT-Screen X P P
? >- r |
Z
P

28
ER
[}
S ©
v

E

Figure 8. Imaging geometry. Projection onto the x—z plane.
Viewing distance is 114 cm. Nodal points of left and right
eyes are ¢,, e, respectively, separated by 6.5 cm. A point p is
imaged onto the screen at g, for the view from the left eye and
at p, for the view from the right eye. ‘

E

r

Table 1. Object geometry

where 6 is the angle of incidence (between surface
normal and light source direction) and ¢ the angle of
emittance (between reflected ray and viewing di-
rection).

The imaging geometry for generating the disparate
images is shown in figure 8. It differs from the usual
camera geometry in that the image is constructed on a
screen that is not perpendicular to the optical axis of
the eyes. Note that the imaging geometry, and
therefore the image itself, does not depend on the
fixation point as long as the nodal points of the two eyes
remain fixed at the positions £, and E,, respectively.
Images were computed for a viewing distance of
114 cm and an interpupillary separation of 6.5 cm.
The viewing angle of the 400 x 400 pixel image with a
diameter of 10.9 cm on the screen was 5.5 deg. Panum’s
fusional area of + 10 arc min (Ardity 1986) corresponds
to an interval from 4.3 cm to 15.2 cm in front of the
screen if the fixation point is 10 cm in front of the
screen. Images were viewed on the CRT-screen under
reduced room light conditions which allowed the sides
of the monitor to be seen. The dimensions and viewing
geometry for the 3 objects are given in table 1. Object
orientation and light-source direction are given in a
coordinate system with x—y axes in the image plane and
z axis towards the viewer. The light source was always
infinitely far away (parallel illumination). The specular
exponent in the Phong shading model was set to 40 for
the sphere and 10 for the ellipsoids. Concave versions
of the two ellipsoids were also used.

(b) Experiment 1:judgement of surface material
quality

Simulation of surface gloss causes a specularity to
appear superimposed on the texture, as in figure 9a.
Previous studies have shown (Biilthoff & Mallot 1988)
that edge-based stereo cues largely override cues such
as monocular or disparate shading. We might therefore
expect also that specularity cues should be overridden;
that is precisely what happens. When the specular
relative disparities are veridical, specularity behind the
surface, the whole surface appears glossy as in figure 9¢
(not just in the vicinity of the specularity (Beck 1972)).
However, when epipolar relative disparity is non-
veridical the surface ceases to look glossy. For example,
if the specularity is in front of the surface with
excessively convergent (—) epipolar relative disparity,
surface quality is reported to be matte and opaque,
with a puff of cloud in front of the surface. The cloud
patch is not ‘seen’ as a specularity and therefore there
is no reason why the surface should look glossy. For
excessively divergent (+4) relative disparity subjects
usually report that the surface looks transparent, with a
source of light behind it (like a frosted glass light bulb).

surface principal axes/cm orientation light source
sphere 10.0 111 —-111
horizontal ellipsoid 8.08.012.0 —111 001
oblique ellipsoid 4.5459.0 —110.25 001

Phil. Trans. R. Soc. Lond. B (1991)
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(6)

Relative disparity of specularity
adjusted by the subject
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Figure 9. The perception of surface properties can change by moving a specular highlight relative to the surface. The
surface of the sphere (a) (uncrossed view) looks metallic because the highlight is in the correct position behind the
surface. If the highlight is in front of the surface the surface looks duller, and not at all mirror-like (metallic). The
human visual system seems to exploit the laws of reflection in the three-dimensional interpretation of two-dimensional
images. In the psychophysical adjustment task with the sphere, most subjects place the specular highlight close to the
predicted apparent depth (or, equivalently, relative epipolar disparity) (b).

Again an incorrect position (relative disparity) of the
specularity discounts the bright patch as a specularity
and the visual system finds a different interpretation
for the way in which the patch was generated. The
interpretation of surface property changes from opaque
to transparent. When the relative disparity is zero the
simulated specularity looks like a powdery patch on the
surface and the surface does not look glossy. Note
however that in non-stereo images (like any photo-
graph) surfaces can look glossy even even with zero
relative disparity. In this case a cue conflict does not
really exist because all surfaces are flat and relative
disparity does not have any meaning in such images.

In an informal two-alternative forced choice (2AFC).

experiment, 11 out of 12 naive observers who were
asked which of two presented surfaces was ‘polished’,
chose one shown in figure 94, on which the specularity
has divergent relative epipolar disparity, rather than
one with convergent relative epipolar disparity. This is
in agreement with the prediction of the model.

We wished to test whether the visual system is

Phil. Trans. R. Soc. Lond. B (1991)

sensitive not just qualitatively but also quantitatively
to stereoscopic relative disparity. We devised an
adjustment task in which naive subjects were asked to
obtain the appearance of highest surface gloss. They
repeatedly pressed buttons which (unknown to the
naive subjects) caused the relative disparity of a
specularity to vary. They were simply told was that
pressing the two buttons would make the surface
appear more or less shiny. Either circumpolar disparity
was held constant (at the value determined by the ray-
optic model) while epipolar disparity was varied or
vice versa. Steps 1n specular disparity for each button
press were sufficiently small (2 pixels or about
1.5 arc min) that most of the subjects did not perceive
the specularity to be moving in depth. Five test surfaces
were used in the adjustment task, a convex sphere, two
convex ellipsoids and their reversed, concave counter-
parts.

Results for the convex sphere (figure 94) show that,
on average, subjects adjusted values were not signific-
antly different from veridical for epipolar disparities
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Table 2. Epipolar disparity for convex surfaces (arc min)

surface predicted adjusted
surface subject disparity disparity disparity n
horizontal ellipsoid FB —4.604+0.67 20
1B } —12.4 -9.1 { —0.4140.69 20
DP —11.254+0.43 40
oblique ellipsoid FB —2.87+0.56 20
1B } —-5.8 0.0 { —2.59+0.46 20
DP —5.09+0.35 40
Table 3. Epipolar disparity for concave surfaces (arc min)
surface predicted adjusted
surface subject disparity disparity disparity n
horizontal ellipsoid FB 12.03+0.64 20
IB } 12.4 9.1 { 15.81+0.24 20
DP 12.75+0.42 40
oblique ellipsoid MF 58 0.0 5.1940.88 19
SE 5.541+0.60 20
Table 4. Circumpolar disparity for convex surfaces (arc min)
7 predicted adjusted
surface subject disparity disparity n
sphere IB 0.94+0.95 20
FB } 0.5 { 2.29+0.60 19
DP 0.06 +0.54 40
Pooled 0.82+0.40 79
horizontal ellipsoid 1B 5.92+1.15 20
FB } 0.7 {2.79i0.94 20
DP 0.76+0.34 40
oblique ellipsoid SE 2.514+0.49 20
MF —0.29+0.99 20
AB —2.26+0.29 20
HB —3.3 —1.6040.46 20
1B —1.5240.52 40
B —1.44+0.85 20
DP —1.97+0.49 20
Pooled —1.65+0.24 140
Table 5. Circumpolar disparity for concave surfaces (arc min)
predicted adjusted
surface subject disparity disparity n
horizontal ellipsoid 1B 10.97+1.29 20
FB} —0.7 { 0.86+0.64 20
DP 2.18+0.44 40

(p<0.001, F=2). It is difficult to get significant
circumpolar (vertical) disparity effects for this surface
because the veridical circumpolar disparity is close to
zero (0.5 arc min). Four naive subjects adjusted the
circumpolar disparity close to zero (table 4) but it is
conceivable that there is anyway some regression
towards zero. We therefore tested a situation in which
the correct circumpolar disparity of a specularity was
quite different from zero. This is the case for the
oblique oriented ellipsoid shown in figure 6. The data
under ‘oblique ellipsoid’ in table 4 show that all five
naive subjects and the two authors made adjustments
whose signs were as predicted by the model. This is

Phil. Trans. R. Soc. Lond. B (1991)

particularly interesting because non-zero circumpolar
disparity is more or less solely associated with specular
reflections. The visual system apparently has some
dedicated competence for analysis of specularities.
However, the adjustments are not in quantitative
agreement with the model (at a 959, significance
level). All adjusted values were biased towards zero
disparity. This again suggests regression towards zero,
perhaps because most of the time, for non-specular
features, circumpolar disparities are close to zero.
Similar results are obtained also for another convex
ellipsoid with horizontal orientation of its major axis.
Again, the sign of the epipolar relative disparity is
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Figure 10. The perception of surface curvature can change with the position of a specular highlight. To determine
whether judgements of surface shape are influenced by specular relative disparity we used a stereo image whose
three-dimensional interpretation can flip between two states (convex—concave). If a highlight is added to the image
the 3D interpretation of the inner part of the surface is biased somewhat towards convex (left image in (a)) but still
reversible. A stereo pair (a) was made with zero disparity, with a specularity superimposed. The specularity could
have either convergent or divergent disparity, flipping randomly between the two, with 5- or 10-second exposures
separated by a random-dot masking frame. Subjects make a two-alternative forced choice (2AFC) between convex
and concave. After a short training period (20 exposures) they make choices which conform to the predictions of the
model (4). Note that the effect is difficult to reproduce in print because of the limited dynamic range.
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always correct (table 2). This corresponds to robust
discrimination between convex and concave surfaces as
predicted earlier (prediction 5).

Poor agreement is obtained in the case of the
concave ellipsoid (tables 3, 5), even the signs of the
relative epipolar circumpolar disparities, after ad-
justment, are inconsistent. Subjects reported that, for
this surface, the adjustment task was difficult to
perform. The results for all tested surfaces are
summarized in figure 9 and tables 2, 3, 4 and 5.

The conclusion of this experiment is that the human
visual system models the physics of specular reflection
well enough to predict relative disparity effects.
Agreement with predictions is good qualitatively (sign
is preserved), and there a degree of quantitative
agreement, but apparently with some regression
towards zero. In particular, in the case of a convex
sphere for which we can associate epipolar disparity
with depth, the visual system ‘expects’, correctly, that
a specularity lies behind not on a surface (figure 95).

(¢) Experiment 2: judgement of surface geometry
(curvature)

The second experiment is complementary to the
first. Can the visual system accommodate to variations
in specular relative disparities by changing its hy-
pothesis about surface curvature, rather than its
hypothesis of glossiness?

We devised the stimulus of figure 104, a stereo,
textured variant of an ambiguous (reversible) shaded
surface (Ramachandran 1988). The texture elements
all have zero disparity, consistent with a fronto-parallel
surface. None the less, monocular shading or texture
cues are not entirely overriden (Biilthoff & Mallot
1988), so that subjects can usually see both convex (like
a ball in a saucer) and concave (like a dog-bowl)
interpretations. A superimposed specularity, with
either convergent (—) or divergent (+) relative
disparity strongly influences the interpretation. As the
specular stereo model predicts, convergent (—) relative
disparity biasses the subjects’ interpretation away from
convex. Similarly, divergent(+) relative disparity
biasses interpretations away from concave. The pre-
diction was tested by a two-alternative forced choice
(2AFC) between a convex or a concave surface
interpretation, when subjects were presented with
simulated specularities, divergent or convergent
(5 arc min), in random sequence. The 5-, 10- or
15-s exposures were separated by random-dot masking
frames. Note that subjects were asked whether the
surface appeared convex or concave, not whether the
specularity was behind or in front of the surface. Before
recording responses subjects could familiarize them-
selves with the task with a short run of 20 exposures but
no feedback as to the correctness of the responses was
given at any time.

The effect develops gradually with repeated ex-
posures. Time sequences (figure 104) show, that whilst
initially subjects may be locked into one or other
interpretation, after around 20 exposures they reliably
pick the interpretation that is consistent with the sign
of epipolar relative disparity. Note that the change in

Phil. Trans. R. Soc. Lond. B (1991)

position of the specularity is contrary to that of the
surface, when the specularity is furthest away (di-
vergent epipolar relative disparity) the surface is
predicted to be convex, so its centre is nearer to the
viewer and vice-versa. Any explanation in terms of a
pulling effect exerted by the specularity on the surface
is thereby excluded.

8. CONCLUSIONS

In conclusion, let us return to the predictions made
earlier and consider which have been addressed by
these experiments and what remains to be investigated.
Prediction 1 is substantially addressed by the ad-
justment experiment. Subjects are able, at least for
certain surfaces, to detect discrepancies in epipolar and
circumpolar specular disparity which they correct by
adjustment. When presented informally with a surface
in which the specular epipolar disparity was physically
inconsistent they reported a loss of the glossy ap-
pearance. Even for those convex surfaces for which
adjustments of epipolar disparity of specularities
accorded less accurately with the model, subjects did
not place the specularity on the surface, but behind it,
in fulfilment of prediction 3. For concave surfaces
behaviour did not accord with the model at all, for
reasons which are not altogether clear. For prediction
4, that for reasons of computational robustness the
specular stereo cue could overwhelm non-specular
shape cues we have only circumstantial evidence. In
experiment 2, the stereoscopic cue is actually for a flat
surface whilst there is monocular evidence for cur-
vature. In that case the specular stereo cue is able to
dominate. Other experiments should be tried to test
the prediction more directly, for example, by using
textures of varying density. Prediction 5 concerned the
robustness of convex—concave discrimination from the
sign of specular relative epipolar disparity. This is
strikingly demonstrated by experiment 2, in which the
discrimination succeeds despite the presence of promi-
nent edge-based stereo cues and strong cue-conflict.

Remaining predictions relate to motion analogues
of the stereoscopic effects presented here, to the in-
teraction of monocular and stereoscopic cues for
specularity and to stronger effects that could result
from extended motions. It would be surprising, given
the similarity of the models, if similar results could not
be obtained for motion; it remains to be seen whether
they can. The other cases are less clear-cut. Does the
visual system exploit the extra geometric information
that is inherent in extended motions? Does it utilize the
monocular shape of the specularity as a further cue to
shape? How is that integrated with the specular stereo
cue?
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APPENDIX
(a) Derivation of the specular motion equation

In this appendix it is shown how the equations
describing viewing geometry and surface geometry
combine to produce the specular motion equation (5).

Image and source positions. The distance from the
viewer at v(¢) to the point of reflection »(f) (figure 4)
is A(f):

A(t) = Ir(5) =o(9)]. (21)

Similarly the distance from the source at S to the point
of reflection is () :

() = |r(t) =S| (22)

Image motion. Viewer position v, point of reflection »
and the image (on the unit image sphere) T of the
specularity are related by

r=v+AT. (23)

Differentiating and projecfing into the plane orthog-
onal to T yields the following equation for image
motion:

AT, = ma(ri—0). (24)

Relative image motion. The fixed surface feature, whose
image is T%*, is stationary and assumed to be
instantaneously coincident with the point of specular
reflection so that, in place of (24), we have:

AT} = —mpo,

and, subtracting this from (24), we obtain an equation
for the relative image motion 4, = T,— T}

A, =my7,.

Projecting orthogonally to n gives », in terms of 4,:

r, = A2A4,. (25)

Incident light ray. Having dealt with the reflected ray,
the incident ray obeys a similar relation, with a
stationary source in place of the viewer, and with
vector uL (|L| = 1) from source to point of reflection :

pL, =, (26)

Specular reflection. The geometry of specular reflection
is expressed as a relation between T, L and the surface
normal n (|n| = 1):

vn=T+L, (27)

where v is a normalising constant. Differentiating and

projecting with 7, :
— ﬂn(TZ+Lt)

T T T (28)
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Surface curvature. Finally surface curvature is
represented by the Weingarten map W which relates
n,r,:

n, = W(r,). (29)

Substituting in (29) for n, from (28) and then for
T, L, from (24) and (26), we obtain

mp(r,—v,) w7
W(r,) =im, (%+%)

Now, using (27) and the tangency condition »,"n = 0,
it follows that

7Tn 7TT rt = 7Tn 7TL rt’

SO nNow

r,—v, r,
WiR) = ("),
where I7 is as defined in (6). Finally, substituting for »,
from (25) yields the specular motion equation (5).

(b) Convex-concave discrimination : proof of result

A compact proof follows of the rule for discrimination
of convexity—concavity. Given an observation of the
sign of epipolar relative disparity

A (mpv,),
we wish either to disprove that the Weingarten map W

1s positive definite (convex surface) or to disprove that
it is negative definite (concave surface). Now from (18)

sign (4" myv,) = sign (mpv," (W m, mov0,)),
= Sign ((ﬂn ﬂT vt) : ( W_lﬂn ﬂT vt)))

Phil. Trans. R. Soc. Lond. B (1991)

since W is restricted, both in domain and range, to the
tangent plane on the surface. Finally, writing

z=m M0,

we have

sign (4" (mpv,)) = 2" Wlg,

which is positive only if W™ and hence W is not
negative definite, so that the surface is either convex or

hyperbolic. The proof for concave-hyperbolic cur-
vature is similar.

(¢) Degeneracy on the caustic

Here is the proof that the full model (5) is degenerate,
whether or not the Weingarten map is of full rank,
when the viewer hits a caustic surface. The model
equation (5) becomes singular when I7Tv, = 0 for some
r, # 0. Now v is on the caustic when it is on a reflected
ray,

v=r+AT,

and when also, for some », # 0, when also

v, =0,

(Bruce & Giblin 1984). In that case, certainly
ITv, =0,

so that the model equation is singular.
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face feature 1s horizontal. The surface feature 1s con-
ained by epipolar geometry but the specularity is not.
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gure 9. The perception of surface properties can change by moving a specular highlight relative to the surface. The
rface of the sphere (a) (uncrossed view) looks metallic because the highlight is in the correct position behind the
srface. It the highlight is in front of the surface the surface looks duller, and not at all mirror-like (metallic). The
iman visual system seems to exploit the laws of reflection in the three-dimensional interpretation of two-dimensional
lages. In the psychophysical adjustment task with the sphere, most subjects place the specular highlight close to the
edicted apparent depth (or, equivalently, relative epipolar disparity) (b)
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gure 10. The perception of surface curvature can change with the position of a specular highlight. To determine
hether judgements of surface shape are influenced by specular relative disparity we used a stereo image whose
ree-dimensional interpretation can flip between two states (convex—concave). If a highlight 1s added to the image
2e 3D interpretation of the inner part of the surface is biased somewhat towards convex (left image in (a)) but still
versible. A stereo pair (a) was made with zero disparity, with a specularity superimposed. The specularity could
sive either convergent or divergent disparity, flipping randomly between the two, with 5- or 10-second exposures
parated by a random-dot masking frame. Subjects make a two-alternative forced choice (2AFC) between convex
1id concave. After a short training period (20 exposures) they make choices which conform to the predictions of the
odel (b). Note that the effect is difficult to reproduce in print because of the limited dynamic range.
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